Unique Path II
题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
分析:
题目本身并不难,会做Unique Path就一定能会做Unique Path II.
解法:
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
// write your code here
if (obstacleGrid.size() == 0) {
return 0;
}
if (obstacleGrid[0].size() == 0) {
return 0;
}
if (obstacleGrid[0][0] == 1) {
return 0;
}
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int> > res(m, vector<int>(n, 0) );
res[0][0] = 1;
for (int i = 1; i < m; i++) {
if (obstacleGrid[i][0] == 1) {
res[i][0] = 0;
} else {
res[i][0] = res[i - 1][0];
}
}
for (int j = 1; j < n; j++) {
if (obstacleGrid[0][j] == 1) {
res[0][j] = 0;
} else {
res[0][j] = res[0][j - 1];
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if(obstacleGrid[i][j] == 1) {
res[i][j] = 0;
} else {
res[i][j] = res[i - 1][j] + res[i][j - 1];
}
}
}
return res[m - 1][n - 1];
}
};