Unique Path
题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
接口:
class Solution {
public:
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
int uniquePaths(int m, int n) {
// wirte your code here
}
};
分析:
要求统计方案的个数,同时很明显每个格子unique path的数量等于上一格子+左一格子,所以使用DP。
解法:
class Solution {
public:
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
int uniquePaths(int m, int n) {
// wirte your code here
if (m == 0 || n == 0) {
return 0;
}
vector<vector<int> >f(m, vector<int>(n) );
for (int i = 0; i < m; i++) {
f[i][0] = 1;
}
for (int j = 0; j < n; j++) {
f[0][j] = 1;
}
int path = 0;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
};