Search a 2D Matrix
题目:
Write an efficient algorithm that searches for a value in an m x n matrix.
This matrix has the following properties:
Integers in each row are sorted from left to right. The first integer of each row is greater than the last integer of the previous row.
Example: Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
分析:
这道题目主要有意思的地方在于一个2D坐标到1D坐标的转换,如果说有一个m x n的矩阵,那矩阵的第k个元素,其实是矩阵中(k / n, k % n)位置上的那个元素。
解法:
class Solution {
public:
/**
* @param matrix, a list of lists of integers
* @param target, an integer
* @return a boolean, indicate whether matrix contains target
*/
bool searchMatrix(vector<vector<int> > &matrix, int target) {
// write your code here
if (matrix.size() == 0) {
return false;
}
if (matrix[0].size() == 0) {
return false;
}
int start = 0;
int m = matrix.size();
int n = matrix[0].size();
int end = m * n - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (matrix[mid / n][mid % n] == target) {
return true;
} else if (matrix[mid / n][mid % n] < target) {
start = mid;
} else {
end = mid;
}
}
if (matrix[start / n][start % n] == target) {
return true;
}
if (matrix[end / n][end % n] == target) {
return true;
}
return false;
}
};