Minimum Path Sum
题目:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
分析:
好久不做4要素分析,这里写一个:
(1) state: f[i][j] 到坐标(i, j)的minimum path sum
(2) function: f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j]
(3) initialization: f[i][0], f[0][j]
(4) answer: f[m - 1][n - 1]
解法:
class Solution {
public:
/**
* @param grid: a list of lists of integers.
* @return: An integer, minimizes the sum of all numbers along its path
*/
int minPathSum(vector<vector<int> > &grid) {
// write your code here
int m = grid.size();
if (m == 0) {
return 0;
}
int n = grid[0].size();
if (n == 0) {
return 0;
}
vector<vector<int> > pathSum(m, vector<int>(n, INT_MAX) );
pathSum[0][0] = grid[0][0];
for (int i = 1; i < m; i++) {
pathSum[i][0] = pathSum[i - 1][0] + grid[i][0];
}
for (int i = 1; i < n; i++) {
pathSum[0][i] = pathSum[0][i - 1] + grid[0][i];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
pathSum[i][j] = min(pathSum[i - 1][j], pathSum[i][j - 1]) + grid[i][j];
}
}
return pathSum[m - 1][n - 1];
}
};